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Lecture 10

Dynamic Asset Pricing Models - I

Consumption-CAPM

• We like the CAPM and the APT because they both capture risk and 
return, but are their related to our more fundamental needs: 
consumption of goods.

• What do we mean by “The equity premium puzzle is too high”?

• We will work out a “simple” model where assets are priced explicitly 
relative to our utility from consumption.

• This explicit model will generate a familiar stochastic discount factor 
pricing relation.

• A structural model like this may answer the question: What do we 
mean by “The equity premium puzzle is too high”?

.
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• The model starts with a representative agent (average Joe), who invests 
today to consume tomorrow.  Average Joe’s utility function:

U(ct,ct+1)
ct: consumption at date t.

• u(.) is increasing –i.e., u’(.)>0- and concave –i.e., u’’(.)<0. 

• u(.) should display aversion to risk and to inter-temporal substitution: 
Average Joe prefers a consumption stream that is steady over time and 
across states of nature.

• Average Joe’s two period problem: Maximize expected utility. Average 
Joe’s can save by buying an asset, xt, with an uncertain payoff –he can 
also save by buying a risk-free asset. 

maxφ {U(ct,ct+1)= Σs πs u(ct,ct+1(s)} ct € R, ct+1 € Rs s.t. 
ct = at - ptφ

ct+1 = at+1 + xt+1φ
- at: endowment of the individual at time t.
- pt: price of asset at time t.
- φ shares purchased at price pt.

• With this setup, we want to find pt –it will be a function.
• This is a structural model –an equilibrium model.

• FOC: 
pt = Et[(u’t+1/ u’t) xt+1] = Et[mt+1 xt+1] (Euler’s equation)

where mt+1 = (u’t+1/ u’t) = intertemporal MRS. mt+1 >0, from the 
assumption about u(.).  
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• Back to the Euler’s equation:
pt = Et[mt+1 xt+1]

• mt+1 is called the stochastic discount factor (SDF). The value of the 
asset, pt, is equal to the expected m-discounted future payoff. 

• mt+1 is also called the pricing kernel. 

•Any function that satisfies the Euler’s equation is an admissible SDF.

• Economists derive SDFs from generic (conditional) factor models:

If asset returns are given by: Ri,t = μt-1 + βt-1 Ft + εt

There exist at-1 and Bt-1, such that mt = at-1 + Bt-1 Ft is an admissible SDF

That is, pi,t = Et[mt+1 xi,t+1] for all assets.

Aside: Where does the SDF come 
from?

• Suppose there are two equally likely states: S=2,  πs=1= ½.

• Average Joe comes with:

– endowment: 1 in date t, (2,1) in date t+1

– utility function E[U(ct,ct+1)] = Σs πs{ln ct + ln ct+1(s)}

–i.e., u(ct,ct+1(s)) = ln ct+ ln ct+1(s)  (additive time separable) 

• mt+1 = (u’t+1/ u’t) = ∂t+1u(1;2,1)/E[∂tu(1;2,1)] 

= (ct/ct+1(1), ct/ct+1(2))=(1/2, 1/1)

=> mt+1 = (½,1) and Et[mt+1] = ¾ 

• Low consumption states are high “m-states”

• Euler’s condition can be derived from no-arbitrage. Thus, risk-neutral 
probabilities combine true probabilities and marginal utilities.
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mt+1 is a function of consumption. This is a consumption-based pricing 
model:

pt = Et[mt+1 xt+1] (CC.0)
or

pt = Et[xt+1] Et[mt+1] + Covt[xt+1, mt+1]

(CC.0) must hold for any asset. Suppose there is a risk-free asset:
1 = Et[(1+rf) mt+1]  1+rf =1/Et[mt+1]

Note that the risk-free rate depends on mt+1. (If no risk-free rate, rf should
be interpreted as Black’s (1972) zero-beta portfolio.)

• Then,
pt = 1/(1+rf) Et[xt+1] + Covt[xt+1, mt+1]

Interpretation: Price = Expected PV + Risk adjustment

=> Positive correlation with SDF (a function of consumption) adds value

• Divide (CC.0) by pt to get an expression in terms of returns:

1 = Et[mt+1 xt+1/ pt ] = Et[mt+1(1+Rt+1)] = Et[mt+1 zt+1)]

where zt+ = (1+Rt+1). Using the definition of covariance:

1 = Et[zt+1] Et[mt+1] + Covt[zt+1, mt+1] (CC.1)

For a risk-free asset: 1/(zf) =Et[mt+1]

Substituting into (CC.1) and solving for zf:,

zf = Et[zt+1] + Covt[zt+1, mt+1] zf .
or

Et[zt+1- zf] = - Covt[zt+1, mt+1] zf .

This is the basis of the C-CAPM: excess return or risk premium is 
determined by its the covariance with the SDF –i.e., a function of 
consumption. To estimate the model we need mt+1.
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Et[zt+1- zf] = - Covt[zt+1, mt+1] zf .

Again, to estimate the model we need mt+1. Depending on the assumption 
to derive mt+1, there are many variants of the C-CAPM.

• A popular C-CAPM version: 
(1) Assume a time-additive utility function 

u(ct) + βEt u(ct+1)
mt+1 = β u’(ct+1)/ u’(ct)

β: subjective discount factor, usually β<1. (In behavioral finance: β≥1.). 

(2) Assume a power function for u(.):
u(ct) = [1/(1-γ)] ct

1-γ (γ captures risk aversion).
Relative AP = RRA = - u’’(.)/u’(.) ct= γ (constant relative risk aversion)

mt+1 = β(ct+1/ct)-γ

Note: Both are not trivial assumptions. 

• In particular, the power utility function has important implications:
- It is scale-invariant: risk premia do not change over time as 

aggregate wealth and the scale of the economy increases. Good property.

- If investors have the same power utility function, even with 
different endowments, it aggregates well. Good result for Average Joe.

- The elasticity of intertemporal consumption (EIS) is the inverse 
of γ. There is no economic reason to expect this link. Bad property.

Epstein and Zin (1989, 1991), and Weil (1989) develop a more flexible 
version of the power utility model,  breaking the link between the EIS 
and γ. 
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• Back to the model, we substitute the power utility in the FOC:

1 = Et[mt+1 (1+Rt+1)] = Et[β(ct+1/ct)-γ (1+Rt+1)] (CC.2)

Note: If we have data on Rt+1 and on ct , we can estimate β and γ. But, 
the relation is non-linear.

• We need an additional assumption to deal with uncertainty –i.e., the 
conditional expectation: Log-normality for Xt=mt+1 (1+Rt+1) . 

Recall: If Xt is conditionally lognormally distributed, it has the 
convenient property:

ln Et[Xt] = Et[ln(Xt)] + (1/2) Vart[ln(Xt)] (Assume Vart[ln(Xt)]=σx
2).

(Thus, we assume joint conditional lognormality and homoscedasticity of 
asset returns and consumption. These are non-trivial assumptions.)

• Recall (CC.2): 1= Et[β(ct+1/ct)-γ (1+Rt+1)]
Taking logs:
0 = ln Et[β(ct+1/ct)-γ (1+Rt+1)] 

= Et[ln( β(ct+1/ct)-γ (1+Rt+1))] + (1/2) Vart[ln( β(ct+1/ct)-γ (1+Rt+1)) ]

= ln β - γ Et[ln(ct+1) - ln(ct)] + Et[rt+1] +(1/2) [σr
2+γ2 σΔ2 - 2γσrΔ] (CC.3)

where rt+1= ln(1+Rt+1)
σr

2 = Var[ln(1+Rt+1)] = Var(rt+1)
σΔ2 = Var[ln(ct+1) - ln(ct)] 
σrΔ = Cov[ln(ct+1) - ln(ct), rt+1]

• (CC.3) is valid for any asset. 
- In particular, for the risk-free asset:

0 = ln β - γ Et[ln(ct+1) - ln(ct)] + rf + (1/2) γ2 σΔ2

or
rf = - ln β + γ Et[ln(ct+1) - ln(ct)] - (1/2) γ2 σΔ2
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- For a risky asset:
Et [rt+1] = - ln β + γ Et[ln(ct+1) - ln(ct)] - (1/2) [σr

2 + γ2 σΔ2 - 2γσrΔ] 

• Now, we can calculate excess returns for a risky asset:
Et [rt+1] – rf = γσrΔ - σr

2/2 (CC.4)

The excess return is a (linear) function of the covariance of the asset with
consumption growth.

• (CC.4) is a Consumption CAPM (C-CAPM) version.
- There is no need to estimate a market portfolio. We only need an 

estimate of consumption growth to estimate this model.
- The coefficient γ has a very nice interpretation: It measures risk 

aversion.
- The C-CAPM (with the added log-linearity restrictions). It is 

easy to test using linear regressions.
Classic references: Lucas (1978), Breeden (1979), Hansen and
Singleton (1982).

Testing C-CAPM: GMM

• GMM can naturally be applied in the C-CAPM. The Euler’s 
equation, gives us a starting point for a moment condition:

0 = Et[β(u’(ct+1)/ u’(ct)) (1+Rt+1) - 1].

Let Zt be a set of L (L ≥ K) instruments, available at time t. Then, for 
each asset i:

Et[Zj {β(ct+1/ct)-γ (1+Ri,t+1) – 1}] = 0 i=1,…, N; j=1,…, L.

Now we have a lot of moments: LxN!

To estimate the model, we work with sample analogues of the moments:
g(wt;θ) = (1/T)Σt[Zj {β(ct+1/ct)-γ (1+Ri,t+1) – 1}] = 0
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• Q: How do we choose Zt the L instruments? Not a  trivial question. In 
general, predetermined regressors are fine.

• Note: In the IV literature there is a big issue: weak instruments. In 
theory, we only need small correlation between Zt and the model’s 
variables. However, the bigger the correlation, the better: 

=> 1,000 weak instruments are no substitute for a strong instrument!

• Advantages of GMM approach:
- All we need is a moment condition.
- No need to log-linearize anything.
- Non-linearities are not a problem.
- Robust to heteroscedasticiy and distributional assumptions.

• Practical Considerations:
- We need at least as many moment conditions as parameters  (just-
identified case).
- If there are more moments –as it is usually the case-, we have “over-
identifying restrictions.” They can be used to test the model (Hansen’s 
J- test):

J = T g(wt;θ)’ S-1 g(wt;θ) ~χ2
LxN-k

where S = Var[g(wt;θ)] 

- Too many moments are not desirable in practice.
- The instruments (conditioning information) matter. 

- Estimating S is tricky. In general, the moments will be serially 
dependent. Newey-West (1987) does not work well when the 
dimensions of the system is large. Small changes to S produces big 
swings in estimated θ. (Sometimes is better to work with W=I!)

- Some questions regarding the small sample properties of GMM.
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• More practical considerations: Hansen’s J-test
- The over-identifying restrictions are subject to a “which 
moments to choose?” critique.
- The J test also depends crucially on S; which cannot be 
estimated accurately.
- Not surprisingly, the J test rejects a lot of models. We should 
be aware of its problems.

• Example: Hansen and Singleton (1982)
For each asset i, H&S have:

Et[Zt β(ct+1/ct)-γ (1+Ri,t+1) - 1] = 0 i=1,…, N.

Rt = NYSE stock returns (VW and EW).
ct = Consumption (Non-durables (ND) and ND plus services (NDS).)
Zt= lagged Rt+1 and ct+1/ct. (H&S use 1, 2, 4 and 6 lags.)

Findings: β close to 1 (around .99) and γ small between .32 to .03. 
J-tests reject C-CAPM.

• A general problem with IV estimation in the C-CAPM: weak 
instruments. It’s difficult to find instruments highly correlated with 
consumption growth. 

•According to Hall’s (1978) consumption follows a random walk:
lagged Rt+1 and ct+1/ct should have low correlation with ct+1/ct!

• Nelson and Startz (1990): asymptotic theory can be a poor 
approximation in finite samples in the presence of weak instruments.

=> a true H0 may be rejected. (The J test usually rejects C-CAPM.)
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More C-CAPM Tests

• Mankiw and Shapiro (1986): Regress the average returns of the 464 
surviving NYSE stocks (1959-1982) on their market β, on 
consumption growth betas, and on both betas to explain the cross 
section of average returns. Market β drive out consumption betas in 
multiple regressions. 

• Breeden, Gibbons, and Litzenberger (1989): Work with industry and 
bond portfolios. CAPM and C-CAPM (with a “mimicking” portfolio 
= “maximum correlation porftolio” for consumption growth as the 
single factor) perform similarly. (Both rejected.)

• Cochrane (1996): Traditional CAPM substantially outperforms the 
canonical consumption-based model in pricing-size portfolios. For 
example, CAPM’s  root mean square pricing error (alpha) is 0.094 
percent per quarter, while C-CAPM’s is 0.54 percent per quarter. 

Scaled Models

• Scaling = Conditioning Information.

• Since it adds information to models, usually it helps models (though, 
you may end up introducing redundant variables. Efficiency loss.)

• Scaling allows to have time-varying coefficients (recall conditional 
CAPM.)

• Go back to Euler’s equation: 1 = Et[mt+1(1+Ri,t+1)]

Recall that any mt+1 satisfying the Euler’s equation is an SDF candidate.

• Let mt+1 = at + bt Re,t+1 Re,t+1 = return on market portfolio

at and bt to be found from Euler’s equation

• We call models of the above form: conditional linear factor models.
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• Substitute mt+1 in Euler’s equation:

1 = Et[(1+Ri,t+1)] [1/(1+rf)] + Covt[(1+Ri,t+1), at + bt Re,t+1]

Et[(1+Ri,t+1)] = (1+rf) - Covt[(1+Ri,t+1), at + bt Re,t+1] (1+rf) 

Et[Ri,t+1] = rf - bt Covt[Ri,t+1,Re,t+1] (1+rf) 

We have a conditional beta representation given by:

Et[Ri,t+1] = rf - bt Vart[Re,t+1] (1+rf) βi,t

where 

bt = - (Et[Re,t+1] - rf ) / Vart[Re,t+1] (1+rf)

• If conditional moments are time-varying (and linear), bt in the SDF 
will not be constant. Sources of variation:

– Vart[Re,t+1]: Predictable volatility changes (very likely in HF data.)

– rf : The risk-free rate (though, it does not change a lot.) 

– Et[Re,t+1]: Forecastable excess returns (Recall predictability 
literature.)

• The scaling literature uses the forecasting instruments to (ad-hoc) 
model bt.

=> Great source of papers: the formulation of bt and at is ad-hoc.

• Example: Constructing a scaled multifactor model
(1) Define instruments:  zt is a forecasting variable for Et[Re,t+1] –i.e., D/P 

(Campbell and Shiller (1988)),  CAY (LL (2001), etc. 

(2) Define at and bt: Let at and bt be linear functions of zt:
at = γ0 + γ1 zt and bt = η0 + η1 zt

(3) Introduce at and bt into mt+1

mt+1 = at + bt Re,t+1 = γ0 + γ1 zt + (η0 + η1 zt) Re,t+1

(4) Generate multifactor model: Use Euler’s equation, Et[mt+1(1+Ri,t+1)] 

1 = Et[[γ0 + γ1 zt + η0 Re,t+1 + η1 (zt Re,t+1)] (1+Ri,t+1)] 

Now, we have a 3-factor model!
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The Puzzles 

• The C-CAPM leads to three puzzles:

– Equity Premium Puzzle  -- Mehra and Prescott, (1985)

– Risk Free Rate Puzzle  -- Weil (1989) 

– Stock Market Volatility Puzzle  -- Shiller (1982) 

• We can estimate an equity risk-premium using (CC.4): 
Et [rt+1] – rf = γσrΔ - σr

2/2
Actual difference: 4.18%
Average [ln(ct+1) - ln(ct)] = .018
Average σr = .1674
Estimated σrΔ = .0029
Assume γ = 19 --too big for Mehra and Prescott (1985)

=> Et[rt+1] – rf = 19*.0029-.5 (.1674)2 = .04108 (log return!)

• The calculations are an approximation, since the moments in (CC.4) are 
in terms of innovations. CLM say: Not a bad the approximation.

The Equity Premium Puzzle
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• Mehra and Prescott (1985) think that the highest plausible value for γ is 
10. Then, 

Et [rt+1] – rf = .015, 

which is very small relative to the observed risk premium 4.18% 
(estimated with over 100 years of data!).

This is the equity risk-premium puzzle.

Note: A large risk aversion coefficient, γ, is needed to resolve the puzzle. 
We need to amplify the low variability of consumption (or covariance 
with rt).

Aside: Geometric vs. Arithmetic Average

• Technical issue, but it is first-order important in practice.

• Simple stock returns have fat right tails and truncated left tails (limited 
liability).

- Arithmetic averages are pulled to the right and exceeds the median.
- Geometric averages are close to the median.

• The difference between the two is about one-half the variance of 
returns, or about 1.5% for short-term returns.

Note: To the extent that stocks are mean-reverting, variance and 
arithmetic average decline with the holding period.
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• Current  equity risk premium estimates
• Dimson, Marsh, and Staunton (2006): 1900-2005 geometric average: 

- World: 4.7% 
- U.S.:  5.5%
- U.K.: 4.4% 

• Cogley and Sargent (2008): U.S. numbers change over time (SD) 
1872 – 2002: 4.10% (SD=17.34%)
1872 – 1928: 2.66% (SD=15.07%)
1929 – 1965: 7.08% (SD=22.39%) 
1966 – 2002: 3.34% (SD=14.74%) --likely smaller after 08 crisis! 

• Barro (2005): arithmetic (Real stock returns – Real Gov. bill returns):
- Japan (1923-2004): 9.2% - (-1.2%) = 10.4% (SD=27.1%)
- Canada (1934-2004): 7.4% - 1.0% = 6.3% (SD=16.3%)
- U.S. (1880-2004): 8.1% - 1.5% = 6.6% (SD=19.1%)
- U.K. (1880-2004): 6.3% - 1.6% = 4.7% (SD=17.9%)
- France (1896-2004): 7.0% - (-1.8%) = 8.8% (SD=27.9%)

• We can estimate  γ or β –given the other- using the formulation for the 
risk-free rate:

rf = - ln β + γ Et[ln(ct+1) - ln(ct)] - (1/2) γ2 σΔ2 (CC.5)
Average rf = .018
Average [ln(ct+1) - ln(ct)] = .018
Average σΔ = .0328
Assume γ = 19 => β=1.12 > 1, a negative rate of time preference!

Weil (1989) calls this the risk-free puzzle. 

(CC.5) presents rf  as a quadratic function of γ.  The last term in (CC.5) is 
called the “precautionary savings effect.” But, it is usually ignored since 
σΔ is low. Thus, economists (Weil, among them) think of a positive 
relation between rf and γ.

The Risk-free Puzzle
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• Siegel (1999) points out that the low returns on fixed interest are the 
“puzzle.” 

Siegel observes that real equity returns around 7% have been stable over 
time and justifiable (possible survivorship bias, limited diversification, 
portfolio management costs, etc.)

Hansen-Jagannathan Bounds

• Consumption based models don’t work empirically – equity premium 
puzzle. Instead of just trying a bunch of different utility functions, it is 
helpful to characterize some properties that mt+1 must satisfy.

• HJ bounds – bound on {σ (mt+1),E(mt+1), other moments of mt+1}

• Purpose:

(1) Give us a clearer understanding of why certain asset pricing 
models are rejected by the data.

(2) Allow us to compare asset pricing models against one another.

(3) Help to identify features of the data that present the most stringent 
restrictions on asset pricing models.

• What is an asset pricing model?



10/2/2014

16

• HJ bound using a single return. 

From the Euler’s equation:
1= Et[mt+1 (Rt+1-rf)] 

Taking logs: 0 = Et[mt+1] Et[yt+1] + ρ σy σm

where
yt+1 = Rt+1-rf

ρ = Covt(mt+1,yt+1)

Then, σm = - Et[mt+1] {Et[yt+1] /(ρ σy)}         (ρ ≠ 0)

Since ρ is between [-1,1] =>  σm ≥ Et[mt+1] {Et[yt+1] /σy }

σm/Et[mt+1] ≥  Et[(Rt+1-rf)] /σR (=Sharpe ratio)

• Theorem (HJ Bounds): σm/Et[mt+1] must be at least as large as the 
maximum SR attained by any portfolio.

• Equity premium puzzle (again):
σm = σ( u’t+1/ u’t) ≥  (1/(1+rf)) |Et[(Rt+1-rf)] /σR|

For the power utility model: σm = σ(β(ct+1/ct)-γ) ≥  (1/rf) |Et[(Rt+1-rf)] /σR|

• Observed SR of stock market indices is too high (.06/.18=.33), relative 
to (low) the volatility of consumption (.033)  => (unrealistically) high 
level of risk aversion
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• HJ bound using a vector of returns (no restrictions mt+1 ≥ 0)

Start with Euler’s equation:
pt = Et[mt+1 xt+1] (Nx1  vectors)

Think of regressing mt+1 on xt+1:

mt+1 = Et[mt+1] + (xt+1 - Et[xt+1])’ δ + εt+1 --εt+1 iid ~ D(0,Vart(εt+1)).

Note that Var(mt+1) = δ’ Vart(xt+1) δ + Vart(εt+1).

From the Euler’s condition,
pt = Et[xt+1] Et[mt+1] + Covt[xt+1, mt+1]

= Et[xt+1] Et[mt+1] + Covt[xt+1, Et[mt+1] + (xt+1 - Et[xt+1])’ δ + εt+1]
= Et[xt+1] Et[mt+1] + Covt[xt+1,xt+1’] δ
= Et[xt+1] Et[mt+1] + Vart(xt+1) δ

=> δ = {Vart(xt+1)}
-1 {pt

- Et[xt+1] Et[mt+1]}

=> δ = {Vart(xt+1)}
-1 {pt

- Et[xt+1] Et[mt+1]}

Recall that Var(mt+1) = δ’ Vart(xt+1) δ + Vart(εt+1). Then, 

Var(mt+1) ≥ {pt
- Et[xt+1] Et[mt+1]} {Vart(xt+1)}

-1 {pt
- Et[xt+1] Et[mt+1]}

This is an hyperbola in {Et[mt+1], Var(mt+1)} space.

As we go through values of Et[mt+1], from higher to lower, the slope to 
the tangency portfolio on the efficient frontier falls until 1/Et[mt+1], 
equals the expected return on the minimum variance portfolio. As 
Et[mt+1] falls further, the SR increases.

• Bounds on other moments of mt+1 can also be found. If risk-free asset 
exist, we can compute bounds with the restriction that mt+1 > 0. 

• The mt+1 on the HJ bound is perfectly negatively correlated with the 
excess return of the tangency portfolio.



10/2/2014

18

• Using the HJ bound to rule out asset pricing models

• Suppose we assume the power utility model presented above:

mt+1 = β(ct+1/ct)-γ

1. Would γ=0 be a good model? mt+1 = β => σm = 0. No!

2. γ=1 (log utility)? mt+1 = β (ct/ct+1) => σm = 1%. No!

3. We need high γ for σm not to violate the HJ bounds.

• Q: Does adding an asset class expand the efficient frontier? Same as 
asking if adding these assets cause the HJ bounds to go down.

• The HJ are based on point estimates, which all are measured with error.
Burnside (1994) proposes a number of tests to evaluate the HJ bounds.
The vertical distance, h, test is based on:

h = σ(mt+1) – [{pt
- Et[xt+1] Et[mt+1]}{Vart(xt+1)}

-1{pt
- Et[xt+1] Et[mt+1]}]1/2

Replacing by the sample counterparts, we get ĥ. ĥ, once appropriately 
scaled by σ(ĥ) converges in distribution to a standard normal.
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• Asset prices volatility is too high to be explained by fundamentals –i.e., 
earnings and dividends. Shiller (1982) and LeRoy and Porter (1981). 

• Both papers have serious econometric (time-series) issues.

• Shiller (1982) pointed out this by looking at the ex-post NPV of 
dividends and computing stock market theoretical volatility. 

Pt = Et[(Pt+1 + Dt+1)/ζt] where ζt is the discount factor.

Repeated substitution (assuming ζt= ζ –i.e., constant discount factor):

Pt = Et[Σk Dt+k/ζk] + Et[ Pt+K/ζK] =
= Et[Σk Dt+k/ζk]  = Pt* (impose transversality condition)

• Shiller (1982) computed the volatility of Pt and Pt*.

The Excess Volatility Puzzle

• We do not know Pt*. But, ex-post we can compute it. The basic 
assumption behind the comparison is rationality: 

Pt = Et[Pt*].
Then,

Pt* = Pt + εt.

Var (Pt*) = Var[Pt] + Var[εt] => Var (Pt*) > Var[Pt].

But, Shiller (1982) found Var (Pt*) < Var[Pt]   (a big difference!)

Problems: (1) No bubbles allowed in solution/imposition of PT= PT*.
(2)  NPV calculations are good for risk-neutrality.
(3) Ex-post = ex-ante.
(4) Unit roots, serial correlation.
(5) Finite sample manipulation of Dt (endogeneity issue).

• Mehra and Prescott (1985) changes the center of attention to the equity 
premium. But, the HJ bounds brings it back.
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• We can use (CC.5) to estimate γ (let’s assume β=.995):
rf = - ln β + γ Et[ln(ct+1) - ln(ct)] - (1/2) γ2 σΔ2

• Or we can use (CC.4) : Et [rt+1] – rf = γσrΔ - σr
2/2   

Problem: In practice, the estimates of γ in both regressions are in total 
disagreement. Not a good result for the model.

Another C-CAPM inconsistency


